Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260460

RESUMO

Host factors that define the cellular tropism of SARS-CoV-2 beyond the cognate ACE2 receptor are poorly defined. From a screen of human airway derived cell lines that express varying levels of ACE2/TMPRSS2, we found a subset that express comparably high endogenous levels of ACE2 but surprisingly did not support SARS-CoV-2 replication. Here we report that this resistance is mediated by a basally active cGAS-STING pathway culminating in interferon (IFN)-mediated restriction of SARS-CoV-2 replication at a post-entry step. Pharmacological inhibition of JAK1/2, depletion of the IFN-α receptor and cGAS-STING pathway effectors substantially increased SARS-CoV-2 replication in these cell models. While depletion of cGAS or STING was sufficient to reduce the preexisting levels of IFN-stimulated genes (ISGs), SARS-CoV-2 infection in STING knockout cells independently induced ISG expression. Remarkably, SARS-CoV-2-induced ISG expression in STING knockout cell as well as in primary human airway cultures was limited to uninfected bystander cells, demonstrating efficient antagonism of the type I/III IFN-pathway, but not viral sensing or IFN production, in productively infected cells. Of note, SARS-CoV-2-infected primary human airway cells also displayed markedly lower levels of STING expression, raising the possibility that SARS-CoV-2 can target STING expression or preferentially infect cells that express low levels of STING. Finally, ectopic ACE2 overexpression overcame the IFN-mediated blocks, suggesting the ability of SARS-CoV-2 to overcome these possibly saturable blocks to infection. Our study highlights that in addition to viral receptors, basal activation of the cGAS-STING pathway and innate immune defenses may contribute to defining SARS-CoV-2 cellular tropism.

2.
Sci Signal ; 16(815): eadi9018, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085818

RESUMO

The nuclear factor erythroid 2-related factor 2 (NRF2) transcription factor activates cytoprotective and metabolic gene expression in response to various electrophilic stressors. Constitutive NRF2 activity promotes cancer progression, whereas decreased NRF2 function contributes to neurodegenerative diseases. We used proximity proteomic analysis to define protein networks for NRF2 and its family members NRF1, NRF3, and the NRF2 heterodimer MAFG. A functional screen of co-complexed proteins revealed previously uncharacterized regulators of NRF2 transcriptional activity. We found that ZNF746 (also known as PARIS), a zinc finger transcription factor implicated in Parkinson's disease, physically associated with NRF2 and MAFG, resulting in suppression of NRF2-driven transcription. ZNF746 overexpression increased oxidative stress and apoptosis in a neuronal cell model of Parkinson's disease, phenotypes that were reversed by chemical and genetic hyperactivation of NRF2. This study presents a functionally annotated proximity network for NRF2 and suggests a link between ZNF746 overexpression in Parkinson's disease and inhibition of NRF2-driven neuroprotection.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteínas Repressoras/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Correpressoras , Proteômica
3.
Mol Cell Proteomics ; 22(11): 100647, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716475

RESUMO

The NFE2L2 (NRF2) oncogene and transcription factor drives a gene expression program that promotes cancer progression, metabolic reprogramming, immune evasion, and chemoradiation resistance. Patient stratification by NRF2 activity may guide treatment decisions to improve outcome. Here, we developed a mass spectrometry-based targeted proteomics assay based on internal standard-triggered parallel reaction monitoring to quantify 69 NRF2 pathway components and targets, as well as 21 proteins of broad clinical significance in head and neck squamous cell carcinoma (HNSCC). We improved an existing internal standard-triggered parallel reaction monitoring acquisition algorithm, called SureQuant, to increase throughput, sensitivity, and precision. Testing the optimized platform on 27 lung and upper aerodigestive cancer cell models revealed 35 NRF2 responsive proteins. In formalin-fixed paraffin-embedded HNSCCs, NRF2 signaling intensity positively correlated with NRF2-activating mutations and with SOX2 protein expression. Protein markers of T-cell infiltration correlated positively with one another and with human papilloma virus infection status. CDKN2A (p16) protein expression positively correlated with the human papilloma virus oncogenic E7 protein and confirmed the presence of translationally active virus. This work establishes a clinically actionable HNSCC protein biomarker assay capable of quantifying over 600 peptides from frozen or formalin-fixed paraffin-embedded archived tissues in under 90 min.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carcinoma de Células Escamosas/metabolismo , Fator 2 Relacionado a NF-E2 , Proteômica , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/metabolismo , Biomarcadores Tumorais/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/uso terapêutico , Formaldeído
4.
J Biol Chem ; 298(6): 101986, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35487243

RESUMO

Aberrant activation or suppression of WNT/ß-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and "dark." Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the ß-catenin-dependent and ß-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated ß-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and ß-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.


Assuntos
Caseína Quinase I , Via de Sinalização Wnt , beta Catenina , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
5.
Cell Rep ; 36(2): 109364, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34214467

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) variants govern transmissibility, responsiveness to vaccination, and disease severity. In a screen for new models of SARS-CoV-2 infection, we identify human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of angiotensin-converting enzyme 2 (ACE2) expression. Remarkably, H522 infection requires the E484D S variant; viruses expressing wild-type S are not infectious. Anti-S monoclonal antibodies differentially neutralize SARS-CoV-2 E484D S in H522 cells as compared to ACE2-expressing cells. Sera from vaccinated individuals block this alternative entry mechanism, whereas convalescent sera are less effective. Although the H522 receptor remains unknown, depletion of surface heparan sulfates block H522 infection. Temporally resolved transcriptomic and proteomic profiling reveal alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type I interferon signaling. These findings establish an alternative SARS-CoV-2 host cell receptor for the E484D SARS-CoV-2 variant, which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.


Assuntos
COVID-19/imunologia , COVID-19/metabolismo , Receptores Virais , Glicoproteína da Espícula de Coronavírus/metabolismo , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Ciclo Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Perfilação da Expressão Gênica , Heparitina Sulfato/metabolismo , Humanos , Interferon Tipo I/metabolismo , Helicase IFIH1 Induzida por Interferon/metabolismo , Modelos Biológicos , Ligação Proteica , Domínios Proteicos , Proteômica , Receptores Virais/metabolismo , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Transdução de Sinais , Glicoproteína da Espícula de Coronavírus/genética , Células Vero , Internalização do Vírus , Replicação Viral
6.
bioRxiv ; 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33688646

RESUMO

Established in vitro models for SARS-CoV-2 infection are limited and include cell lines of non-human origin and those engineered to overexpress ACE2, the cognate host cell receptor. We identified human H522 lung adenocarcinoma cells as naturally permissive to SARS-CoV-2 infection despite complete absence of ACE2. Infection of H522 cells required the SARS-CoV-2 spike protein, though in contrast to ACE2-dependent models, spike alone was not sufficient for H522 infection. Temporally resolved transcriptomic and proteomic profiling revealed alterations in cell cycle and the antiviral host cell response, including MDA5-dependent activation of type-I interferon signaling. Focused chemical screens point to important roles for clathrin-mediated endocytosis and endosomal cathepsins in SARS-CoV-2 infection of H522 cells. These findings imply the utilization of an alternative SARS-CoV-2 host cell receptor which may impact tropism of SARS-CoV-2 and consequently human disease pathogenesis.

7.
J Cell Sci ; 133(14)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32546533

RESUMO

Nuclear factor erythroid 2-related factor 2 (NFE2L2, also known as NRF2) is a transcription factor and master regulator of cellular antioxidant response. Aberrantly high NRF2-dependent transcription is recurrent in human cancer, but conversely NRF2 activity diminishes with age and in neurodegenerative and metabolic disorders. Although NRF2-activating drugs are clinically beneficial, NRF2 inhibitors do not yet exist. Here, we describe use of a gain-of-function genetic screen of the kinome to identify new druggable regulators of NRF2 signaling. We found that the under-studied protein kinase brain-specific kinase 2 (BRSK2) and the related BRSK1 kinases suppress NRF2-dependent transcription and NRF2 protein levels in an activity-dependent manner. Integrated phosphoproteomics and RNAseq studies revealed that BRSK2 drives 5'-AMP-activated protein kinase α2 (AMPK) signaling and suppresses the mTOR pathway. As a result, BRSK2 kinase activation suppresses ribosome-RNA complexes, global protein synthesis and NRF2 protein levels. Collectively, our data illuminate the BRSK2 and BRSK1 kinases, in part by functionally connecting them to NRF2 signaling and mTOR. This signaling axis might prove useful for therapeutically targeting NRF2 in human disease.This article has an associated First Person interview with the first author of the paper.


Assuntos
Fator 2 Relacionado a NF-E2 , Receptor EphA5 , Proteínas Quinases Ativadas por AMP/metabolismo , Mutação com Ganho de Função , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/genética
8.
Oncotarget ; 9(39): 25386-25401, 2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29875996

RESUMO

The overexpression and hyperactivity of p21-activated serine/threonine kinases (PAKs) is known to facilitate tumorigenesis; however, the contribution of cancer-associated PAK mutations to tumor initiation and progression remains unclear. Here, we identify p21-activated serine/threonine kinase 5 (PAK5) as the most frequently altered PAK family member in human melanoma. More than 60% of melanoma-associated PAK5 gene alterations are missense mutations, and distribution of these variants throughout the protein coding sequence make it difficult to distinguish oncogenic drivers from passengers. To address this issue, we stably introduced the five most common melanoma-associated PAK5 missense mutations into human immortalized primary melanocytes (hMELTs). While expression of these mutants did not promote single-cell migration or induce temozolomide resistance, a subset of variants drove aberrant melanocyte proliferation. These mitogenic mutants, PAK5 S364L and D421N, clustered within an unstructured, serine-rich domain of the protein and inappropriately activated ERK and PKA through kinase-independent and -dependent mechanisms, respectively. Together, our findings establish the ability of mutant PAK5 to enhance PKA and MAPK signaling in melanocytes and localize the engagement of mitogenic pathways to a serine-rich region of PAK5.

9.
Mol Cancer Res ; 15(3): 237-249, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28039358

RESUMO

Senescent cells within the tumor microenvironment (TME) adopt a proinflammatory, senescence-associated secretory phenotype (SASP) that promotes cancer initiation, progression, and therapeutic resistance. Here, exposure to palbociclib (PD-0332991), a CDK4/6 inhibitor, induces senescence and a robust SASP in normal fibroblasts. Senescence caused by prolonged CDK4/6 inhibition is DNA damage-independent and associated with Mdm2 downregulation, whereas the SASP elicited by these cells is largely reliant upon NF-κB activation. Based upon these observations, it was hypothesized that the exposure of nontransformed stromal cells to PD-0332991 would promote tumor growth. Ongoing clinical trials of CDK4/6 inhibitors in melanoma prompted a validation of this hypothesis using a suite of genetically defined melanoma cells (i.e., Ras mutant, Braf mutant, and Ras/Braf wild-type). When cultured in the presence of CDK4/6i-induced senescent fibroblasts, melanoma cell lines exhibited genotype-dependent proliferative responses. However, in vivo, PD-0332991-treated fibroblasts enhanced the growth of all melanoma lines tested and promoted the recruitment of Gr-1-positive immune cells. These data indicate that prolonged CDK4/6 inhibitor treatment causes normal fibroblasts to enter senescence and adopt a robust SASP. Such senescent cells suppress the antitumor immune response and promote melanoma growth in immunocompetent, in vivo models.Implications: The ability of prolonged CDK4/6 inhibitor treatment to induce cellular senescence and a robust SASP in primary cells may hinder therapeutic efficacy and promote long-term, gerontogenic consequences that should be considered in clinical trials aiming to treat melanoma and other cancer types. Mol Cancer Res; 15(3); 237-49. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Melanoma Experimental/tratamento farmacológico , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Animais , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Humanos , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células Estromais/efeitos dos fármacos , Células Estromais/enzimologia , Células Estromais/patologia , Microambiente Tumoral
10.
Mol Cancer Res ; 12(2): 167-83, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24136988

RESUMO

p16(INK4a), located on chromosome 9p21.3, is lost among a cluster of neighboring tumor suppressor genes. Although it is classically known for its capacity to inhibit cyclin-dependent kinase (CDK) activity, p16(INK4a) is not just a one-trick pony. Long-term p16(INK4a) expression pushes cells to enter senescence, an irreversible cell-cycle arrest that precludes the growth of would-be cancer cells but also contributes to cellular aging. Importantly, loss of p16(INK4a) is one of the most frequent events in human tumors and allows precancerous lesions to bypass senescence. Therefore, precise regulation of p16(INK4a) is essential to tissue homeostasis, maintaining a coordinated balance between tumor suppression and aging. This review outlines the molecular pathways critical for proper p16(INK4a) regulation and emphasizes the indispensable functions of p16(INK4a) in cancer, aging, and human physiology that make this gene special.


Assuntos
Envelhecimento/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neoplasias/genética , Envelhecimento/metabolismo , Animais , Senescência Celular , Cromossomos Humanos Par 9 , Inibidor p16 de Quinase Dependente de Ciclina/genética , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Neoplasias/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...